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Abstract

In this contribution, we focus on the interplay between viscoelastic Kirchhoff term and loga-
rithmic source term. We deal with the finite time blow-up of solutions with subcritical initial
energy for a system of viscoelastic Kirchhoff type wave equations with weak damping terms
and logarithmic nonlinearities. Also, the polynomial decay result was obtained. These results
fill in the gaps in previous studies on this type of models.
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1 Introduction

In this paper, we deal with the following for a system of viscoelastic wave equations of Kirchhoff
type with logarithmic nonlinearities and damping terms for (x, t) ∈ Ω× (0,∞)

utt −M
(
‖∇u‖2 + ‖∇v‖2

)
4 u+

t∫
0

g1 (t− s)4 u (s) ds+ ut = |u|p−2
u ln |u| ,

vtt −M
(
‖∇u‖2 + ‖∇v‖2

)
4 v +

t∫
0

g2 (t− s)4 v (s) ds+ vt = |v|p−2
v ln |v| ,

(1.1)

with the inital-boundary conditions{
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,
v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) , x ∈ Ω,

and
u (x, t) = 0, v (x, t) = 0, (x, t) ∈ ∂Ω× [0,∞) ,

where p ≥ 2γ + 2 is real number. Ω ⊂ Rn (n ≥ 1) is a regular and bounded domain with smooth
boundary ∂Ω. Here, M is a positive C1 function for s ≥ 0 satisfying M (s) = 1 + sγ . The kernel
gi (.) : R+ → R+ (i = 1, 2) satisfies some conditions to be specified later.

Before going further, Eq. (1.1) without the logarithmic source term, Eq. (1.1) becomes the
system of nonlinear Kirchhoff type equations with viscoelastic term which has been extensively
studied and several results concerning existence and nonexistence have been established [8, 15, 16,
17, 19, 20, 27]. The single equation case of (1.1)

utt −M
(
‖∇u‖2

)
4 u+

t∫
0

g (t− s)4 u (s) ds+ h (ut) = f (u) , (1.2)
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is a model to describe the motion of deformable solids as hereditary effect is incorporated [25].
In the case of M(s) = 1, g = 0, f (u) = u ln |u| , (1.2) becomes a wave equation with logarithmic

source term
utt −4u+ h (ut) = u ln |u| . (1.3)

In field of mathematical physics, hyperbolic equations with this type of nonlinearities which have
been appear naturally in supersymmetric field theory and inflation cosmology are one of the most
important nonlinear evolution equations. Furthermore, there are applications in many branches of
physics such as nuclear physics, optics and geophysics [5, 6, 11]. Because of that we should also
point out that there is extensive literature on the question of existence, asymptotic behavior and
nonexistence of solution for the Eq.(1.2), see in this regard [2, 3, 4, 7, 9, 10, 13, 18, 19, 21, 22, 23,
24, 28, 29, 30] .

Studying the interaction effect between logarithmic nonlinearity and other structure associated
with wave system of Kirchhoff type also started very widely. Here, we mention only some results
about the system of Kirchhff type hyperbolic equations with logartihmic source term. In [26],
authors investigated the problem (1.1) in the case of g = 0. They proved global existence and finite
time blow up. Later, in [14], the same author of this article investigated the higher-order following
system utt +M

(
‖Dr1u‖2 + ‖Dr2v‖2

)
(−4)

r1 u−∆ut + |ut|q−2
ut = |u|p−2

u ln |u|

vtt +M
(
‖Dr1u‖2 + ‖Dr2v‖2

)
(−4)

r2 v −∆vt + |vt|q−2
vt = |v|p−2

v ln |v| .
(1.4)

They studied global existence and decay results of the problem (1.4). In [12], the problem (1.1) was
studied with strong damping term by authors. The work focused on the interplay between strong
damping term and logarithmic source term. Global existence result was established by using the
potential well method with Faedo–Galerkin’s method, and exponential decay rate estimates were
obtained.

Motivated by above researchs, we investigated in the present work system (1.1) with nonzero
gi (.) and nonconstant M (s) . This problem has been studied previously with the assumptions that
there are no weak damping term and logarithmic source term. In this work, we note that the method
([31]) no longer applies in this particular situation when the logarithmic nonlinear term appears, for
blow-up in finite time of the solutions. By providing a completely different method from previous
studies, we show that the solutions may blow up at subcritical initial energy (E (0) < d) when the
model involves the weak damping term and logarithnic source term may have different signs. Then,
Theorem 4.2 shows us that there is quite a difference in cases of the equations with logarithmic
nonlinear term for blow-up in finite time of the solutions. After that, the decay esitimates of
solutions in the stable set were also obtained.

This paper is organized as follows. In section 2, we give some lemmas and assumptions which
will be used. Later, in section 3 we state the the lemmas which used for potential well and global
existence Theorem 3.5. The blow up results are presented in section 4. In section 5, we established
polynomial decay result.

2 Preliminaries

We adopt the usual notations and convention for the proof of our results. Throughout this paper,
for brevity of notations, we denote by ‖.‖p the Lebesgue space Lp (Ω) norm and ‖.‖ denotes L2 (Ω)
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norm. As usual, (u, v) =
∫
Ω

u (x) v (x) dx introduce the inner product in L2 (Ω) and the duality

pairing between H−1 and H1
0 (Ω) , respectively. Particulary, Ci (i = 1, 2, ...) denotes various positive

constants which depend on the known constants and may be different at each appearance. First,
we state general hypotheses on g :

(A1) gi (t) : [0,∞) → [0,∞) , (i = 1, 2) is a nonincreasing and differentiable function which
satisfies

gi (0) > 0, li = 1−
∞∫

0

gi (s) ds, l = min {l1, l2} .

(A2) There exists positive constant % such that

g′i (t) ≤ −%gi (t) , t ≥ 0

and for all t ≥ 0
∞∫

0

gi (s) ds < 1− l.

In order to state our results, we define the potential energy functional of problem (1.1)

J(u, v) =
1

2

1−
t∫

0

g1 (s) ds

 ‖∇u‖2 +
1

2

1−
t∫

0

g2 (s) ds

 ‖∇v‖2
+

1

2 (γ + 1)

(
‖∇u‖2 + ‖∇v‖2

)γ+1

+
1

2
[(g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)]

−1

p

∫
Ω

|u|p ln |u| dx+

∫
Ω

|v|p ln |v| dx

+
1

p2

(
‖u‖pp + ‖v‖pp

)
, (2.1)

and the Nehari functional

I(u, v) =

1−
t∫

0

g1 (s) ds

 ‖∇u‖2 +

1−
t∫

0

g2 (s) ds

 ‖∇v‖2
+
(
‖∇u‖2 + ‖∇v‖2

)γ+1

+ (g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)

−

∫
Ω

|u|p ln |u| dx+

∫
Ω

|v|p ln |v| dx

 , (2.2)

for u ∈ H1
0 (Ω) , where

(g ◦ ∇u) (t) =

t∫
0

g (t− s) ‖∇u (s)−∇u (t)‖2 ds.
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From the definitions (2.1) and (2.2), we can easily verify that

J(u, v) =
I(u, v)

p
+

1−
t∫

0

g1 (s) ds

 (p− 2)

2p
‖∇u‖2

+

1−
t∫

0

g2 (s) ds

 (p− 2)

2p
‖∇v‖2

+
(p− 2γ − 2)

2 (γ + 1)

(
‖∇u‖2 + ‖∇v‖2

)γ+1

+
(p− 2)

2p
((g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t))

+
1

p2

(
‖u‖pp + ‖v‖pp

)
. (2.3)

Then we can introduce the stable set

W =
{

(u, v) ∈ H1
0 (Ω)×H1

0 (Ω) : J(u, v) > d, I(u, v) > 0
}
∪ {0} ,

the outer space of the potential well

V =
{

(u, v) ∈ H1
0 (Ω)×H1

0 (Ω) : J(u, v) > d, I(u, v) < 0
}
.

We denote the total energy functional associated with problem (1.1) is given by

E(u, v) =
1

2

(
‖ut‖2 + ‖vt‖2

)
+

1

2

1−
t∫

0

g1 (s) ds

 ‖∇u‖2 +
1

2

1−
t∫

0

g2 (s) ds

 ‖∇v‖2
+

1

2 (γ + 1)

(
‖∇u‖2 + ‖∇v‖2

)γ+1

+
1

2
[(g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)]

−1

p

∫
Ω

|u|p ln |u| dx+

∫
Ω

|v|p ln |v| dx

+
1

p2

(
‖u‖pp + ‖v‖pp

)
. (2.4)
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The initial energy function is obtained as

E(0) =
1

2

(
‖u1‖2 + ‖v1‖2

)
+

1

2

1−
t∫

0

g1 (s) ds

 ‖∇u0‖2 +

1−
t∫

0

g2 (s) ds

 ‖∇v0‖2

+
1

2 (γ + 1)

(
‖∇u0‖2 + ‖∇v0‖2

)γ+1

+
1

2
[(g1 ◦ ∇u0) (t) + (g2 ◦ ∇v0) (t)]

−1

p

∫
Ω

|u0|p ln |u0| dx+

∫
Ω

|v0|p ln |v0| dx

+
1

p2

(
‖u0‖pp + ‖v0‖pp

)
, (2.5)

for (u, v) ∈ H1
0 (Ω)×H1

0 (Ω) , t ≥ 0. Then, by (2.4) and (2.3), it is obvious that

E(t) = E(u, v) =
1

2

(
‖ut‖2 + ‖vt‖2

)
+ J (u, v) . (2.6)

Lemma 2.1. (Sobolev-Poincare inequality [1] )Let m be a number with 2 ≤ m <∞ if n ≤ 2r and
2 ≤ m ≤ 2n

n−2r if n > 2r. Then there is a best constant depending on such that

‖u‖m ≤ C ‖∇u‖
2
, ∀u ∈ H1

0 (Ω)

Lemma 2.2. E(t) is a nonincreasing function for t ≥ 0 and

E′ (t) =
1

2
[(g′1 ◦ ∇u) (t) + (g′2 ◦ ∇v) (t)]−

(
‖ut‖2 + ‖vt‖2

)
−1

2

[
g1 (t) ‖∇u‖2 + g2 (t) ‖∇v‖2

]
≤ 1

2
[(g′1 ◦ ∇u) (t) + (g′2 ◦ ∇v) (t)]

≤ 0. (2.7)

where

(g′ ◦ ∇u) (t) =

t∫
0

g′ (t− s)
∫
Ω

|∇u (s)−∇u (t)|2 dxdt. (2.8)

Proof. Multiplying the first equation of (1.1) by ut and the second equation of (1.1) by vt, and
integrating on Ω, we obtain

E (0) = E (t) +

t∫
0

‖uτ‖2 dτ +

t∫
0

‖vτ‖2 dτ

+
1

2

t∫
0

[(g′1 ◦ ∇u) (τ) + (g′2 ◦ ∇v) (τ)] dτ

−1

2

t∫
0

[
g1 (t) ‖∇u‖2 + g2 (t) ‖∇v‖2

]
dτ. (2.9)
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for t ≥ 0. Being the primitive of an integrable function, E (t) is absolutely continuous, and by the
assumptions (A1) , (A2), (2.7) is valid. q.e.d.

3 Potential well and existence

Later we establish some properties of the J(u, v) and I(u, v) respectively. We list below without
proof.

Lemma 3.1. [12]. Assume that (u, v) ∈ H1
0 (Ω)×H1

0 (Ω) , ‖∇u‖ 6= 0 and ‖∇v‖ 6= 0, then we get
i) lim
λ→0+

J (λu, λv) = 0, lim
λ→∞

J (λu, λv) = −∞,

ii) For 0 < λ <∞ there exists a unique λ∗ such that d
dλJ (λu, λv) |λ=λ∗= 0,

iii) J (λu, λv) is strictly decreasing on λ∗ < λ <∞, J (λu, λv) is strictly increasing on 0 ≤ λ ≤
λ∗, and takes the maximum at λ = λ∗. In other words, there is a unique λ∗ ∈ (0,∞) such that

I (λu, λv) =

 > 0, 0 ≤ λ < λ∗,
= 0, λ = λ∗,
< 0, λ∗ < λ.

Lemma 3.2. [12] i) The definition the depth of potential well

d = inf
u∈N

J (u, v) (3.1)

where
N =

{
(u, v) : (u, v) ∈ H1

0 (Ω)×H1
0 (Ω) \ {0} : I (u, v) = 0

}
is equivalent to

d = inf

{
sup
λ≥0

J (λu, λv) : (u, v) ∈ H1
0 (Ω)×H1

0 (Ω) , ‖∇u‖2 6= 0, ‖∇v‖2 6= 0

}
. (3.2)

ii) The constant d in (3.1) satisfies

d =
l (p− 2)

2p

(
l

Cp+1
1

) 2
p−1

,

where C1 is the optimal constant of Lemma 2.1 (H1
0 (Ω) ↪→ Lp+1) and{

2γ + 2 ≤ p ≤ n+2
n−2 , n > 3,

2γ + 2 ≤ p ≤ ∞, n = 1, 2.
(3.3)

Lemma 3.3. [12]. Let the the conditions (A1) and (A2) hold. Then, for (u0, v0) ∈ H1
0 (Ω) ×

H1
0 (Ω) , (u1, v1) ∈ H1

0 (Ω) × H1
0 (Ω) , there exist (u, v) a weak solution of problem (1.1). Suppose

that E (0) < d.
i) If (u0, v0) ∈W, then (u, v) ∈W for 0 ≤ t ≤ T ;
ii) If (u0, v0) ∈ V, then (u, v) ∈ V for 0 ≤ t ≤ T,
where T is the maximum existence time of (u (t) , v (t)) .
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Lemma 3.4. Under the conditions of Lemma 3.3 in (i) , we obtain

E (0) ≥ E (u, v) ≥ J (u, v) >
l (p− 2)

2p

(
‖∇u‖2 + ‖∇v‖2

)
.

Proof. By I (u, v) > 0, (2.3) and (A1) , we get

J (u, v) ≥ l (p− 2)

2p

(
‖∇u‖2 + ‖∇v‖2

)
,

where p > 2γ + 2.Then by the equality of energy (2.9) and (2.6) we can see clearly that

E (0) ≥ E (u, v) ≥ J (u, v) >
l (p− 2)

2p

(
‖∇u‖2 + ‖∇v‖2

)
.

q.e.d.

Now, we are ready to state the global existence of problem (1.1) whose proof can be found in
[12].

Theorem 3.5. Let (u0, v0) ∈ H1
0 (Ω) × H1

0 (Ω) , (u1, v1) ∈ H1
0 (Ω) × H1

0 (Ω) and (A1)-(A2) con-

ditions hold. If E (0) < d and I (u0, v0) > 0 or ‖∇u0‖2+‖∇v0‖2 = 0, then (1.1) admits a global weak
solution (u (t) , v (t)) ∈ L∞

(
0,∞; H1

0 (Ω)×H1
0 (Ω)

)
, (ut (t) , vt (t)) ∈ L∞

(
0,∞; H1

0 (Ω)× H1
0 (Ω)

)
.

4 Blow up

Lemma 4.1. [31].Suppose that ϕ (t) is a twice continuously differentiable function satisfying for
t > 0 {

ϕ′′ (t) + ϕ′ (t) ≥ C0ϕ
1+ς (t)

ϕ (0) > 0 and ϕ′ (0) ≥ 0

where C0 and ς are positive constants. Therefore ϕ (t) blows up in finite time.

Theorem 4.2. Let (A1) , (A2) and (u0, v0) ∈ H1
0 (Ω) × H1

0 (Ω) , (u1, v1) ∈ H1
0 (Ω) × H1

0 (Ω) hold
and (u, v) is a solution of (1.1). Assume that initial conditions satisfies E (0) ≤ 0 and∫

Ω

(u0u1 + v0v1) ≥ 0

and

max


t∫

0

g1 (s) ds,

t∫
0

g2 (s) ds

 ≤ 1− 4p+ 1

(p+ 1)
2

then the corresponding solution blows up in finite time.

Proof. We set the following auxiliary function

ϕ (t) =
1

2

∫
Ω

(
u2 + v2

)
dx. (4.1)
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A straightforward calculation gives

ϕ′ (t) =

∫
Ω

(uut + vvt) dx. (4.2)

Consequently from (4.2) and direct using (1.1), we have

ϕ′′ (t) = ‖ut‖2 + ‖vt‖2 +

∫
Ω

(uutt + vvtt) dx

= ‖ut‖2 + ‖vt‖2 −M
(
‖∇u‖2 + ‖∇v‖2

)
‖∇u‖2

−M
(
‖∇u‖2 + ‖∇v‖2

)
‖∇v‖2

+

∫
Ω

t∫
0

g1 (t− s)∇u (t)∇u (s) dsdx

+

∫
Ω

t∫
0

g2 (t− s)∇u (t)∇u (s) dsdx

−
∫
Ω

u (t)ut (s) dx−
∫
Ω

v (t) vt (s) dx

+

∫
Ω

up lnudx+

∫
Ω

vp ln vdx. (4.3)

Now we use Young’s inequality to estimates third and fourth terms in right hands of the term (4.3);
we find ∫

Ω

t∫
0

g1 (t− s)∇u (t)∇u (s) dsdx

≤ δ ‖∇u‖2 +
1

4δ

 t∫
0

g1 (s) ds

 (g1 ◦ ∇u) (t) +

 t∫
0

g1 (s) ds

 ‖∇u‖2 (4.4)

and ∫
Ω

t∫
0

g2 (t− s)∇v (t)∇v (s) dsdx

≤ δ ‖∇v‖2 +
1

4δ

 t∫
0

g2 (s) ds

 (g2 ◦ ∇v) (t) +

 t∫
0

g2 (s) ds

 ‖∇v‖2 . (4.5)



On decay and blow-up for a system of viscoelastic wave equations with logarithmic nonlinearity 73

By combining (4.3)-(4.5) to obtain

ϕ′′ (t) + ϕ′ (t) ≥ ‖ut‖2 + ‖vt‖2 − (1 + δ + k)
(
‖∇u‖2 + ‖∇v‖2

)
−
(
‖∇u‖2 + ‖∇v‖2

)γ+1

− k

4δ
[(g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)]

+

∫
Ω

up lnudx+

∫
Ω

vp ln vdx. (4.6)

where k = max

{
t∫

0

g1 (s) ds,
t∫

0

g2 (s) ds

}
.

Using the definition of E (t), (4.6) becomes that

ϕ′′ (t) + ϕ′ (t) ≥
(

1 +
p

2

)
‖ut‖2 + ‖vt‖2

+

(
pl

2
− k − 1− δ

)(
‖∇u‖2 + ‖∇v‖2

)
−
(

1− p

2 (γ + 1)

)(
‖∇u‖2 + ‖∇v‖2

)γ+1

+

(
p

2
− k

4δ

)
[(g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)]

+
1

p

(
‖u‖pp + ‖v‖pp

)
− 2pE(t). (4.7)

At this point from assumption of the theorem, A1, A2 and δ > k
2p , we guarantee

p

2
− k

4δ
≥ 0 and

pl

2
− k − 1− δ ≥ 0.

Therefore, by using of the Lemma 2.2 and E(0) < 0 (4.7) becomes that

ϕ′′ (t) + ϕ′ (t) ≥ 1

p

(
‖u‖pp + ‖v‖pp

)
. (4.8)

Now, Hölder inequality are used to estimates ‖u‖pp and ‖v‖pp as follows

∫
Ω

|u|2 dx ≤

∫
Ω

|u|p dx

 2
p
∫

Ω

1dx


−p−2
p

Kn is called the volume of the domain K, then

‖u‖pp ≥

∫
Ω

|u|2 dx


p
2

(Kn)
2−p
2 (4.9)



74 Nazlı Irkıl, Erhan Pişkin

and by similar calculations we obtain

‖v‖pp ≥

∫
Ω

|v|2 dx


p
2

(Kn)
2−p
2 . (4.10)

By inserting (4.9) and (4.10) into the (4.8), we find

ϕ′′ (t) + ϕ′ (t) ≥ 1

p
(Kn)

2−p
2


∫

Ω

|u|2 dx


p
2

+

∫
Ω

|v|2 dx


p
2

 . (4.11)

To estimate the right-hand side in (4.11), we make use of the following inequality

(a+ b)
υ ≤ 2υ−1 (aυ + bυ)

where a, b ≥ 0, 1 ≤ υ <∞. Therefore, we find

2
p−2
2

∫
Ω

|u|2 dx+

∫
Ω

|v|2 dx


p
2

≤

∫
Ω

|u|2 dx


p
2

+

∫
Ω

|v|2 dx


p
2

.

Consequently, (4.11) becomes

ϕ′′ (t) + ϕ′ (t) ≥ 2p−1 1

p
(Kn)

2−p
2 (ϕ (t))

1+ p−2
2

It is easy to verify that the requirements of Lemma 4.1 are satisfied by

2p−1 1

p
(Kn)

2−p
2 > 0 and

p− 2

2
> 0.

Therefore ϕ (t) blows up in finite. The proof is completed. q.e.d.

5 Polynomial decay

Theorem 5.1. Let (u0, v0) ∈ W, (u1, v1) ∈ H1
0 (Ω) × H1

0 (Ω) and A1, A2 and E (0) < d hold.
Suppose that there is a positive fixed S0 such that E (t) satisfies the following polynomial decay
estimate for ∀t ∈ [0,∞)

E (u (t) , v (t)) ≤ S0

1 + t
.

Proof. It follows from Lemma 3.3 that u ∈W on [0, T ] . By using the definition of the d, A1, (2.9),



On decay and blow-up for a system of viscoelastic wave equations with logarithmic nonlinearity 75

(2.6) and (2.3) we obtain the following inequality

d > E (0) ≥ E (u (t) , v (t)) +

t∫
0

‖ut‖2 dτ +

t∫
0

‖vt‖2 dτ

=
1

2

(
‖ut‖2 + ‖vt‖2

)
+ J (u, v) +

t∫
0

‖ut‖2 dτ +

t∫
0

‖vt‖2 dτ

≥ 1

2

(
‖ut‖2 + ‖vt‖2

)
+
I(u, v)

p
+
l (p− 2)

2p

(
‖∇u‖2 + ‖∇v‖2

)
+

(p− 2γ − 2)

2 (γ + 1)

(
‖∇u‖2 + ‖∇v‖2

)γ+1

+
1

p2

(
‖u‖pp + ‖v‖pp

)
+

(p− 2)

2p
((g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)) +

t∫
0

‖ut‖2 dτ +

t∫
0

‖vt‖2 dτ. (5.1)

which means that
1

2

(
‖ut‖2 + ‖vt‖2

)
≤ d (5.2)

2pd

l (p− 2)
≤
(
‖∇u‖2 + ‖∇v‖2

)
or

2 (γ + 1) d

(p− 2γ − 2)
≤
(
‖∇u‖2 + ‖∇v‖2

)γ+1

, (5.3)

2pd

(p− 2)
≤ ((g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)) (5.4)

p2d ≤ ‖u‖pp + ‖v‖pp (5.5)

and
t∫

0

‖ut‖2 dτ ≤ d and

t∫
0

‖vt‖2 dτ ≤ d. (5.6)

From I (u, v) ≥ 0 and Lemma 3.1, we claim that there is a constant λ∗ ≥ 1 such that
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I (λ∗u, λ∗v) = 0. Therefore, from (2.3) and (3.1), for p ≥ 2γ + 2 we conclude

d ≤ J (λ∗u, λ∗v) =
1

p
I (λ∗u, λ1v) +

l (p− 2)

2p

(
‖∇ (λ∗u)‖2 + ‖∇ (λ∗v)‖2

)
+

(p− 2γ − 2)

2 (γ + 1)

(
‖∇λ∗u‖2 + ‖∇λ∗v‖2

)γ+1

+
(p− 2)

2p
((g1 ◦ ∇ (λ∗u)) (t) + (g2 ◦ ∇ (λ∗v)) (t))

+
1

p2

(
‖λ∗u‖pp + ‖λ∗v‖pp

)
=

l (p− 2)

2p

(
‖∇ (λ∗u)‖2 + ‖∇ (λ∗v)‖2

)
+

(p− 2γ − 2)

2 (γ + 1)

(
‖∇ (λ∗u)‖2 + ‖∇ (λ∗v)‖2

)γ+1

+
(p− 2)

2p
((g1 ◦ ∇ (λ∗u)) (t) + (g2 ◦ ∇ (λ∗v)) (t))

+
1

p2

(
‖λ∗u‖pp + ‖λ∗v‖pp

)
= (λ∗)

2(γ+1)

[
l (p− 2)

(λ∗)
2γ

2p

(
‖∇ (u)‖2 + ‖∇ (v)‖2

)
+

(p− 2γ − 2)

2 (γ + 1)

(
‖∇u‖2 + ‖∇v‖2

)γ+1

+
(p− 2)

(λ∗)
2γ

2p
((g1 ◦ ∇ (u)) (t) + (g2 ◦ ∇ (v)) (t))

+
1

(λ∗)
2(γ+1)−p

p2

(
‖u‖pp + ‖v‖pp

)]
≤ (λ∗)

2(γ+1)
J (u, v) ≤ (λ∗)

2(γ+1)
E (u, v)

< (λ∗)
2(γ+1)

E (0) , (5.7)

which satisfies that

λ∗ >

(
d

E (0)

) 1
2(γ+1)

> 1. (5.8)
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On the other hand, by using I (λ∗u, λ∗v) = 0 equality and definition of I (u, v) , we get

0 = I (λ∗u) = (λ∗)
2
l
(
‖∇u‖2 + ‖∇v‖2

)
+ (λ∗)

2(γ+1)
(
‖∇u‖2 + ‖∇v‖2

)γ+1

+ (λ∗)
2

[(g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)]

−

∫
Ω

|λ∗u|p ln |λ∗u| dx+

∫
Ω

|λ∗v|p ln |λ∗v| dx


= (λ∗)

2
l
(
‖∇u‖2 + ‖∇v‖2

)
+ (λ∗)

2(γ+1)
(
‖∇u‖2 + ‖∇v‖2

)γ+1

+ (λ∗)
2

[(g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)]

− (λ∗)
p

∫
Ω

|u|p ln |u| dx+

∫
Ω

|v|p ln |v| dx


− (λ∗)

p
ln |λ∗|

(
‖u‖pp + ‖v‖pp

)
= (λ∗)

p
I (u, v)−

[
(λ∗)

p − (λ∗)
2
]
l
(
‖∇u‖2 + ‖∇v‖2

)
−
[
(λ∗)

p − (λ∗)
2(γ+1)

] (
‖∇u‖2 + ‖∇v‖2

)γ+1

−
[
(λ∗)

p − (λ∗)
2
]

[(g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)]

− (λ∗)
p

ln |λ∗|
(
‖u‖pp + ‖v‖pp

)
. (5.9)
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By combining (5.8) with (5.9), we arrive at

I (u) ≥

[
(λ∗)

p − (λ∗)
2

(λ∗)
p

] [
l
(
‖∇u‖2 + ‖∇v‖2

)
+ (g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)

]
[

(λ∗)
p − (λ∗)

2(γ+1)

(λ∗)
p

](
‖∇u‖2 + ‖∇v‖2

)γ+1

+ ln |λ∗|
(
‖u‖pp + ‖v‖pp

)
≥

[
1− (λ∗)

2−p
] [
l
(
‖∇u‖2 + ‖∇v‖2

)
+ (g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)

]
[
1− (λ∗)

2(γ+1)−p
] (
‖∇u‖2 + ‖∇v‖2

)γ+1

= β1

[
l
(
‖∇u‖2 + ‖∇v‖2

)
+ (g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)

]
+β2

(
‖∇u‖2 + ‖∇v‖2

)γ+1

≥ β

[
l
(
‖∇u‖2 + ‖∇v‖2

)
+
(
‖∇u‖2 + ‖∇v‖2

)γ+1

+ (g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)

]
, (5.10)

where β = min {β1, β2} ∈ (0, 1) .
Next, we multiple the first equation of (1.1) by u and integrate over Ω × (0, t) and the second

equation of (1.1) by v and integrate over Ω× (0, t) . Then, we obtain

t∫
0

∫
Ω

M
(
‖∇u‖2 + ‖∇v‖2

)
|∇u|2 dxdτ −

t∫
0

∫
Ω

|u|p−1
u ln |u| dxdτ

= −
t∫

0

∫
Ω

uttudxdt−
t∫

0

∫
Ω

utudxdτ +

t∫
0

∫
Ω

t∫
0

g1 (t− s)∇u (t)∇u (s) dxdτds, (5.11)

and

t∫
0

∫
Ω

M
(
‖∇u‖2 + ‖∇v‖2

)
|∇v|2 dxdτ −

t∫
0

∫
Ω

|v|p−1
v ln |v| dxdτ

= −
t∫

0

∫
Ω

vttvdxdτ −
t∫

0

∫
Ω

vtvdxdτ +

t∫
0

∫
Ω

t∫
0

g2 (t− s)∇v (t)∇v (s) dxdτds (5.12)

Since ∫
Ω

t∫
0

g1 (t− s)∇u (t)∇u (s) dxdτds

=
1

2

 t∫
0

g1 (t− s) ‖∇u (t)‖2 +

t∫
0

g1 (t− s) ‖∇u (s)‖2 − (g1 ◦ ∇u) (t)
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and ∫
Ω

t∫
0

g2 (t− s)∇v (t)∇v (s) dxdτds

=
1

2

 t∫
0

g2 (t− s) ‖∇v (t)‖2 +

t∫
0

g2 (t− s) ‖∇v (s)‖2 − (g2 ◦ ∇v) (t)


and using the definition of I (u, v) we conclude that

t∫
0

I (u, v) dτ ≤ −
t∫

0

∫
Ω

uttudxdt−
t∫

0

∫
Ω

utudxdτ −
t∫

0

∫
Ω

vttvdxdt−
t∫

0

∫
Ω

vtvdxdτ.

From the definition of I (u, v), (5.11), (5.12) and using of Young and Hölder inequality, (5.11)
implies that

t∫
0

I (u, v) dτ ≤ −
t∫

0

∫
Ω

uttudxdt−
t∫

0

∫
Ω

utudxdτ −
t∫

0

∫
Ω

vttvdxdt−
t∫

0

∫
Ω

vtvdxdτ

= −
t∫

0

∫
Ω

d

dt
(ut, u) dxdt+

t∫
0

‖ut‖2 dτ −
1

2

t∫
0

d

dt
‖u‖2 dτ

−
t∫

0

∫
Ω

d

dt
(vt, v) dxdt+

t∫
0

‖vt‖2 dτ −
1

2

t∫
0

d

dt
‖v‖2 dτ

=

t∫
0

‖ut‖2 dτ − (ut (t) , u (t)) + (u1, u0)− 1

2
‖u‖2 +

1

2
‖u0‖2

t∫
0

‖vt‖2 dτ − (vt (t) , v (t)) + (v1, v0)− 1

2
‖v‖2 +

1

2
‖v0‖2

≤
t∫

0

‖ut‖2 dτ +

t∫
0

‖vt‖2 dτ +
1

2
‖u‖2 +

1

2
‖v‖2 +

1

2
‖ut‖2

+
1

2
‖vt‖2 +

1

2
‖u0‖2 +

1

2
‖v0‖2 +

1

2
‖u1‖2 +

1

2
‖v1‖2

+
1

2
‖u‖2 +

1

2
‖v‖2 +

1

2
‖u0‖2 +

1

2
‖v0‖2 (5.13)

Inserting (5.2) and (5.6) into (5.13), for 0 < t <∞ we get

t∫
0

I (u) dτ ≤ C. (5.14)
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Morever, the combination of (5.10) and (5.14), it follows that

t∫
0

l
(
‖∇u‖2 + ‖∇v‖2

)
+ (g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t) ≤ 1

1− (λ∗)
2−p

t∫
0

I (u, v) dτ ≤ C, (5.15)

t∫
0

(
‖∇u‖2 + ‖∇v‖2

)γ+1

dτ ≤ 1

1− (λ∗)
2(γ+1)−p

t∫
0

I (u, v) dτ ≤ C, (5.16)

and
t∫

0

(
‖u‖pp + ‖v‖pp

)
dτ ≤ 1

ln |λ∗|

t∫
0

I (u, v) dτ ≤ C. (5.17)

By using Lemma 3.1, we consider that

[(1 + t)E (t)]
′

= (1 + t)E′ (t) + E (t) (5.18)

≤ E (t)

Integrating the (5.18) over (0, t) and using (2.6) and (2.3), it implies that

(1 + t)E (t) ≤ E (0) +

t∫
0

E (τ) dτ

= E (0) +
1

2

 t∫
0

‖ut‖2 dτ +

t∫
0

‖vt‖2 dτ

+
1

p

t∫
0

I (u, v) dτ

l (p− 2)

2p

t∫
0

(
‖∇u‖2 + ‖∇v‖2

)
dτ

+
(p− 2)

2p

t∫
0

((g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)) dτ

+
(p− 2γ − 2)

2 (γ + 1)

t∫
0

(
‖∇u‖2 + ‖∇v‖2

)γ+1

dτ

+
1

p2

t∫
0

(
‖u‖pp + ‖v‖pp

)
dτ. (5.19)

Consequently, inserting (5.6), (5.14)-(5.17) into (5.19), we prove that there is a positive fixed S0

such that
(1 + t)E (t) ≤ S0.

Therefore, the proof was completed. q.e.d.
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[16] G. Li, L. Hong, W. Liu, Global Nonexistence of Solutions for Viscoelastic Wave Equations of
Kirchhoff Type with High Energy, J. Funct. Spaces and Appl., (2012), 530861, 1-15,

[17] W. Liu, G. Li, L. Hong, General Decay and Blow-Up of Solutions for a System of Viscoelastic
Equations of Kirchhoff Type with Strong Damping, J. Funct. Spaces, (2014), 284809, 1-21.

[18] G. Liu, The existence, general decay and blow up for a plate equation with nonlinear damping
and a logarithmic source term, ERA, 28(1), (2020), 263-289.

[19] A. Peyravi, General stability and exponential growth for a class of semi-linear wave equations
with logarithmic source and memory terms., Appl. Math. Optim., 81, (2020), 545–561.
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[24] E. Piskin, N. Irkıl, Blow up of the solution for hyperbolic type equation with logarithmic
nonlinearity, Aligarh Bull. Math, (2020), 39(1-2), 19-29.

[25] R.M. Torrejon, J. Yong, On a quasilinear wave equation with memory, Nonlinear Anal., 16,
(1991), 61–78.

[26] X. Wang, Y. Chen, Y. Yang, J. Li, R. Xu, Kirchhoff type system with linear weak damping
and logarithmic nonlinearities, Nonlinear Anal., 188, (2019), 475-499.

[27] S. Wu, T. Wu, On decay and blow-up of solutions for a system of nonlinear wave equations,
J. Math. Anal. Appl. 394 (2012) 360–377.

[28] Y. Yang, J. Li, T. Yu, Qualitative analysis of solutions for a class of Kirchhoff equation with
linear strong damping term, nonlinear weak damping term and power-type logarithmic source
term, Appl. Numer. Math., 141, (2019), 263-285.

[29] L. Yang, W. Gao, Global well-posedness for the nonlinear damped wave equation with loga-
rithmic type nonlinearity, 24, (2020), 2873–2885

[30] Y. Ye, Logarithmic viscoelastic wave equation in three dimensional space, Appl. Anal., (2021),
100 (10), 2210-2226

[31] Y. Zhou, Global existence and nonexistence for a nonliear wave equation with damping and
source terms, Math. Nacht, 278, (2005),1341–1358 .


